Quantum Mechanics solved problem-1

The energy eigenvalue and corresponding eigenfunction for a particle in one-dimensional potential V(x) are:

    \[ E=0, \quad \Psi(x)=\frac{A}{x^2+a^2} \]

Where A is a positive constant. The form of potential V(x) is:

A. \frac{\hbar^2(3x^2-a^2)}{m(x^2+a^2)^2}

B. \frac{\hbar^2(x^2-a^2)}{2m(x^2+a^2)^2}

C. \frac{\hbar^2(3x^2-a^2)}{m(x^2+a^2)^3}

D. \frac{\hbar^2(x^2-a^2)}{2m(x^2+a^2)^3}

The correct Choice is A.

See the full solution from following video tutorial:

Leave a Comment

Your email address will not be published. Required fields are marked *